arteche

Moving together

4. \quad Answers for any tripping application
5. > Technical standards
6. > General characteristics
7. > Range of products
8. > Trip relays
9. > Trip and lockout relays
10. > Trip circuit supervision relays
11. > Auxiliary supply circuit supervision relays
12. > High / low burden configuration
13. > Breaking capacity
14. > Pick-up voltage/release voltage-temperature charts
15. > Model selection
16. > Dimensions and panel mounting cut-off

ANSWER FOR ANY TRIPPING APPLICATION

ARTECHE offers a wide range of relays specially designed to be used in circuit breaker tripping applications.
> Interface between protection and control equipments and HV and/or MV circuit breakers, eliminating risks in case of internal failure of the circuit breaker.
> Trip contacts multiplication, to operate directly on the circuit breaker and transmit the corresponding alarms in a minimum time.
> Trip and lock-out, with electric or hand reset to avoid accidental closing of circuit breakers associated to power transformers, generators or machines.
> The surveillance of the trip circuit, guarantees it is in perfect conditions to
 allow the trip when it is needed.

TECHNICAL STANDARDS

GENERAL STANDARDS

In addition to the specific applicable standards, ARTECHE auxiliary relays are designed based on the fulfilment of the following
standards:
> IEC 61810: Electromechanical all-or-nothing relays.
> IEC 60255: Electrical relays. Measuring relays and protection equipment.
IEC 61812: Specified time relays for industrial use.
> IEC 60947: Low-voltage switchgear and controlgear.
> IEC 61000: Electromagnetic compatibility.

GENERAL CHARACTERISTICS

Some of the general characteristics of the ARTECHE trip relays are:
>High isolation level between input and output circuit, which guarantees that a problem in the circuit breaker will not cause irreparable damages on the protection system.
> Fast operating times, down to 3 ms , minimizing the impact on the total trip time.
> High breaking capacity, which allows direct operation on highly inductive circuits.
> Sturdy design, which ensures high reliability.
> Wide range of auxiliary voltage (Vdc and Vac).
>Self-cleaning of the contacts.
> Security contacts according to EN 50205.
> Easy installation (plug-in relays with different installation possibilities).
> Designed to work in permanent service, even at high temperature for the whole voltage range.
> Capable to work under ambients with relative humidity around 100\%.
> Seismic characteristics, allowing their use in installations which can be subject to vibrations, as for example in power stations or in regions with high risk of seism.
> High protection degree (IP4O), with transparent cover, making them appropriate for tropical and saline environments.
> Fulfilment of the most demanding standards: IEC, EN, IEEE, CE and UL mark.
> No maintenance needed.

In addition, the different number of alternatives that are offered when the equipment is selected, both technically (increase of the breaking capacity by serial contacts, high speed operation of the output contacts, possibility of adding different options to the relay) and in the assembly method (front, rear or flush mounted sockets, with screws or fastons) must be considered.

E322124
UL Recognized Component Marks for USA and
Canada: The combined UL signs for the USA and Canada are recognized by the authorities of both countries. All auxiliary relays identified with this mark meet the requirements of both countries.

RANGE OF PRODUCTS

TRIP RELAYS

Instantaneous trip relays, whose contacts change instantaneously from the rest position to the working position when the coil is energized. The contacts return to the rest position when the coil is no longer energized.

This range includes relays with $2,4,8$ and 16 contacts, with operating times from 3 ms to 8 ms , depending on the model.

All the relays include a diode in parallel with the coil (see auxiliary relays with overvoltage protection characteristic) and comply with the shock and vibration standards, related to the relays with seismic characteristics.

TRIP AND LOCKOUT RELAYS

Trip relays with 2 stable positions for the output contacts. Depending on which coil is energized, the contacts will change from one position to the other. The design of the ARTECHE relays has no consumption in permanence, and prevents both coils from being energized simultaneously.

This range includes relays with $3,4,8$ and 16 contacts, with operating times below 10 ms , depending on the model, and possibility of manual reset. The position change is made with 2 sets of coils with separated entrances, in $\mathrm{BF}-3$ and $\mathrm{BJ}-8$, and with breaking-flame contacts for each set of coils.

TRIP CIRCUIT SUPERVISION RELAYS

For single phase or three phase circuit breakers. Through a small supervision current the whole circuit is supervised, in both positions of the circuit breaker (open or closed).

The correct state of the circuit is showed with a green LED on the front plate of the relay. The output contacts change their position if the relay detects a failure in the continuity of the circuit.

The single phase trip circuit supervision relay can be manufactured with different LED indicator configurations, refers to selection chart for more detailed information

AUXILIARY SUPPLY CIRCUIT SUPERVISION RELAYS

Auxiliary relay with four changeover contacts, aimed to supervise the failure of trip supply.

Connecting the relay across the trip circuit supply, the equipment is normally energized. Faults will occur when the trip voltage is lost, so the relay drops off in those cases, providing the related signs and alarms. In order to avoid faulty alarms due to instantaneous supply voltage dips, the drop off time of the relay is delayed over 100 ms so those non-permanent failures of trip supply would not be considered.

Auxiliary supply circuit supervision relays can be manufactured with different LED indicator configuration, refers to selection chart for more detailed information

TRIP RELAYS

arteche

TRIP RELAYS (I)

Applications
Intended for tripping applications where high quality requirements in operating time (with models even tripping in less than 3 ms) and breaking capacity are needed, that is the case of tripping HV and MV circuit breakers.

TRIP RELAYS (III)

\begin{tabular}{|c|c|c|c|}
\hline Model \& RI-16R \& RXR-4 \& RF-4UR

\hline Applications \& Intended for trip applications where high demanding requirements in operating time and breaking capacity are needed. \& Tripping applications with very high speed requirements. \& Tripping applications with very high speed requirements.

\hline High burden configuration \& See page 15 for technical details \& Not available \& Not available

\hline \multicolumn{4}{|l|}{Construction characteristics}

\hline Contacts no. \& 16 Changeover \& 4 Changeover \& 4 Changeover

\hline Connections

Options \& \& \& | With OP options • LED included |
| :--- |
| - Diode in parallel with the coil included |

\hline Weight (g) \& 1250 \& 126 \& 250

\hline Dimensions (mm) \& (A) $120 \times$ (B) $110 \times(\mathrm{C}) 105$ \& (A) $53 \times(\mathrm{B}) 90 \times(\mathrm{C}) 58$ \& (A) $42,5 \times$ (B) $50,4 \times$ (C) 72 (type F short)

\hline \multicolumn{4}{|l|}{Coil characteristics}

\hline Standard voltages ${ }^{(1)}$ \& 48, 110, 125, 220 Vdc \& 110, 125, 250 Vdc \& 110, 125, 250 Vdc

\hline Voltage range \& $+10 \%-20 \% U_{N}$ \& $+10 \%-20 \% U_{N}$ \& +10\% -20\% Un

\hline Pick-up voltage ($23{ }^{\circ} \mathrm{C}$) \& See pick-up/release voltage- \& 61\% \& 72\%

\hline Release voltage ($23{ }^{\circ} \mathrm{C}$) \& temperatur \& 26\% \& 48\%

\hline Average consumption \& 12 W \& 2,8 W \& 2 W

\hline \multicolumn{4}{|l|}{Operating time}

\hline Pick-up time \& $<10 \mathrm{~ms}$ \& $<3 \mathrm{~ms}$ \& $<3 \mathrm{~ms}$

\hline Drop-out time \& <50 ms \& $<4 \mathrm{~ms}$ \& $<4 \mathrm{~ms}$

\hline \multicolumn{4}{|l|}{Contactos}

\hline Contact material \& AgNi \& AgNi \& AgNi

\hline Permanent current \& 10 A \& 8 A \& 8 A

\hline Max. making capacity \& 40A / 0,5 s / 110 Vdc \& 15 A during 4s \& 15 A during 4s

\hline Breaking capacity \& ee breaking capacity curves (Contact configuration type A) \& See breaking capacity curves \& See breaking capacity curves

\hline $U_{\text {max }}$ opened contact \& $250 \mathrm{Vdc} / 400 \mathrm{Vac}$ \& $250 \mathrm{Vdc} / 400 \mathrm{Vac}$ \& $250 \mathrm{Vdc} / 400 \mathrm{Vac}$

\hline \multicolumn{4}{|l|}{Performance data}

\hline Mechanical endurance \& 10^{6} operations \& 10^{7} operations \& 10^{7} operations

\hline Operating temperature \& $-25^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$ \& $-40^{\circ} \mathrm{C}+55^{\circ} \mathrm{C}$ \& $-25^{\circ} \mathrm{C}+55^{\circ} \mathrm{C}$

\hline Storage temperature \& $-40^{\circ} \mathrm{C}+85^{\circ} \mathrm{C}$ \& $-40^{\circ} \mathrm{C}+85^{\circ} \mathrm{C}$ \& $-40^{\circ} \mathrm{C}+85^{\circ} \mathrm{C}$

\hline Max. operating humidity \& 93\% / +40 ${ }^{\circ} \mathrm{C}$ \& 93\% / +40 ${ }^{\circ} \mathrm{C}$ \& $93 \% /+40^{\circ} \mathrm{C}$

\hline Operating altitude ${ }^{(2)}$ \& <2,000 m \& <2,000 m \& <2,000 m

\hline
\end{tabular}

[^0]\begin{tabular}{|c|c|c|c|c|}
\hline Model \& BF-3R \& BF-4R \& BJ-8R \& BI-16R

\hline Applications \& Intended \& d lockout applications where time and breaking cap \& high demanding requirements acity are needed. \& s in operating

\hline High burden configuration \& not available \& See page 15 for technical details \& See page 15 for technical details \& See page 15 for technical details

\hline \multicolumn{5}{|l|}{Construction characteristics}

\hline Contacts no. \& 3 Changeover \& 4 Changeover \& 8 Changeover \& 16 Changeover

\hline Connections

Options \& \& ptions are not available \& \&

\hline Weight (g) \& \& \& 600 \& 1250

\hline Dimensions (mm) \& (A) $45 \times$ (B) 45 \& 5 (F large Type) \& | (A) $90 \times(B) 50 \times(C) 100,5$ |
| :--- |
| (J large Type) | \& (A) $120 \times$ (B) $110 \times(\mathrm{C}) 105$

\hline \multicolumn{5}{|l|}{Coil characteristics}

\hline Standard voltages ${ }^{(1)}$ \& \multicolumn{4}{|c|}{24, 48, 72, 110, 125, $220 \mathrm{Vdc} / 63,5,110,127,230 \mathrm{Vac}(50-60 \mathrm{~Hz}$)}

\hline Voltage range \& \multicolumn{4}{|c|}{$+10 \%-20 \% U_{N}$}

\hline Pick-up voltage \& \multicolumn{4}{|c|}{See pick-up voltage / temperature curves for Latching relays}

\hline Average consumptions only in the change-over \& 17 W \& 17 W \& 45 W \& 90 W

\hline \multicolumn{5}{|l|}{Operating time}

\hline Pick-up time \& \multicolumn{4}{|c|}{<10 ms (Vdc) <20 ms (Vac)}

\hline \multicolumn{5}{|l|}{Contacts}

\hline Contact material \& \multicolumn{4}{|c|}{AgNi}

\hline Distance between contacts \& \multicolumn{4}{|c|}{1,8 mm}

\hline Permanent current \& \multicolumn{4}{|c|}{10 A}

\hline Instantaneous current \& \multicolumn{4}{|c|}{80 A during $200 \mathrm{~ms} / 200 \mathrm{~A}$ during 10 ms}

\hline Max. making capacity \& \multicolumn{4}{|c|}{$40 \mathrm{~A} / 0,5 \mathrm{~s} / 110 \mathrm{Vdc}$}

\hline Breaking capacity \& \multicolumn{4}{|c|}{See breaking capacity curves (Contact configuration type A)}

\hline Max. breaking capacity \& \multicolumn{4}{|c|}{See value for 50.000 operations}

\hline $U_{\text {max }}$ opened contact \& \multicolumn{4}{|c|}{$250 \mathrm{Vdc} / 400 \mathrm{Vac}$}

\hline \multicolumn{5}{|l|}{Performance data}

\hline Mechanical endurance \& \multicolumn{3}{|c|}{10^{7} operations} \& 10^{6} operations

\hline Operating temperature \& \multicolumn{4}{|c|}{$-40^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$}

\hline Storage temperature \& \multicolumn{4}{|c|}{$-40^{\circ} \mathrm{C}+85^{\circ} \mathrm{C}$}

\hline Max. operating humidity \& \multicolumn{4}{|c|}{93\% / +40 ${ }^{\circ} \mathrm{C}$}

\hline Operating altitude ${ }^{(2)}$ \& \multicolumn{4}{|c|}{<2000 m}

\hline
\end{tabular}

TRIP AND LOCKOUT RELAYS (II)

\begin{tabular}{|c|c|c|c|}
\hline Model \& BF-4RP \& BJ-8RP \& BI-16RP

\hline Applications \& Intended for tripping and lock \& applications where high qual needed, with \& in operating time and breaking capacity are

\hline High burden configuration \& \multicolumn{3}{|c|}{See page 15 for technical details}

\hline \multicolumn{4}{|l|}{Construction characteristics}

\hline Contacts no. \& 4 Changeover \& 8 Changeover \& 16 Changeover

\hline Connections

Options \& Options a \& \&

\hline Weight (g) \& 300 \& 600 \& 1400

\hline Dimensions (mm) \& (A) $45 \times(B) 45 \times(C) 96,5$ (F large Type) \& | (A) $90 \times(B) 50 \times(C) 100,5$ |
| :--- |
| (J large Type) | \& (A) $120 \times(B) 110 \times(C) 105$

\hline \multicolumn{4}{|l|}{Coil characteristics}

\hline Standard voltages ${ }^{(1)}$ \& \multicolumn{2}{|r|}{24, 48, 72, 110, 125, 220 Vdc $63,5,110,127,230 \mathrm{Vac}(50-60 \mathrm{~Hz})$} \& 48, 110, 125, 220 Vcc

\hline Voltage range \& \multicolumn{3}{|c|}{$+10 \%-20 \% U_{N}$}

\hline Pick-up voltage ($20^{\circ} \mathrm{C}$) \& \multicolumn{3}{|c|}{See pick-up voltage / temperature curves for Latching relays}

\hline Average consumptions only in the change-over \& 17 W \& 45 W \& 90W

\hline \multicolumn{4}{|l|}{Operating time}

\hline Pick-up time \& $<10 \mathrm{~ms}$ (Vdc) < 13 ms (Vac) \& <10 ms (Vdc) <20 ms (Vac) \& <10 ms

\hline \multicolumn{4}{|l|}{Contacts}

\hline Contact material \& \multicolumn{3}{|c|}{AgNi}

\hline Distance between contacts \& \multicolumn{3}{|c|}{1,8 mm}

\hline Permanent current \& \multicolumn{3}{|c|}{10 A}

\hline Instantaneous current \& \multicolumn{3}{|c|}{80 A during $200 \mathrm{~ms} / 200$ A during 10 ms}

\hline Max. making capacity \& \multicolumn{3}{|c|}{$40 \mathrm{~A} / 0,5 \mathrm{~s} / 110 \mathrm{Vdc}$}

\hline Breaking capacity \& \multicolumn{3}{|c|}{See breaking capacity curves (Contact configuration type A)}

\hline Max. breaking capacity \& \multicolumn{3}{|c|}{See value for 50,000 operations}

\hline $U_{\text {max }}$ opened contact \& \multicolumn{3}{|c|}{$250 \mathrm{Vdc} / 400 \mathrm{Vac}$}

\hline \multicolumn{4}{|l|}{Performance data}

\hline Mechanical endurance \& \multicolumn{2}{|c|}{10^{7} operations} \& 10^{6} operations

\hline Operating temperature \& \multicolumn{3}{|c|}{$-40 \div \mathrm{C}+70^{\circ} \mathrm{C}$}

\hline Storage temperature \& \multicolumn{3}{|c|}{$-40^{\circ} \mathrm{C}+85^{\circ} \mathrm{C}$}

\hline Max. operating humidity \& \multicolumn{3}{|c|}{93\% / +40은}

\hline Operating altitude ${ }^{(2)}$ \& \multicolumn{3}{|c|}{<2000 m}

\hline
\end{tabular}

[^1]
TRIP CIRCUIT SUPERVISION RELAYS

Model

Applications

Trip circuit supervision for single-phase circuit Trip circuit supervision for three-phase circuit breakers

Construction characteristics
2 Changeover
2 Changeover

Connections

With OP options.

Options	See model selection table.	Options are not available.
Weight (g)	100	163
Dimensions (mm)	(A) $42,5 \times$ (B) $50,4 \times$ (C) 96,6 (F large Type)	(A) $82,5 \times$ (B) $50,4 \times$ (C) 96,6 (J large Type)
Coil characteristics		
Standard voltages ${ }^{(1)}$	24/30, 60, 110/125, 220 Vd	10/127, $230 \mathrm{Vac}(50-60 \mathrm{~Hz}$)
Voltage range	+10\%	$5 \% U_{N}$
Pick-up voltage ($23 \bigcirc$ C)		
Release voltage ($23 \bigcirc$ C)		
Consumptions	1,35 W	1,6 W
Operating time		
Drop-out time	>50	ms
Contacts		
Contact material		
Permanent current		
Instantaneous current		
Max. making capacity	15 A d	ng 4 s
Max. breaking capacity	0,3 A	10 Vdc
$U_{\text {max }}$ opened contact	250 Vdc	400 Vac
Performance data		
Mechanical endurance	10^{7} op	ations
Operating temperature	-40응	$55^{\circ} \mathrm{C}$
Storage temperature	-40응	$85^{\circ} \mathrm{C}$
Max. operating humidity	93\%	$40^{\circ} \mathrm{C}$
Operating altitude ${ }^{(2)}$	<20	m

[^2]AUXILIARY SUPPLY
SUPERVISION RELAYS
Model

Applications
Construction characteristics
Timing Contacts no.

Options	With OP options. See model selection table.
Weight (g)	250
Dimensions (mm)	(A) $42,5 \times$ (B) $50,4 \times$ (C) 96,6 (F large Type)
Coil characteristics	
Standard voltages ${ }^{(1)}$	24, 48, 72, 110, 125, $220 \mathrm{Vdc} / 63,5,110,127,230 \mathrm{Vac}$
Voltage range	$+10 \%-20 \% U_{N}$
Pick-up voltage	See pick-up release voltage-temperature
Release voltage	
Consumptions in permanence	4,5 W
Operating time	
Pick-up time	$<20 \mathrm{~ms}$
Drop-out time To minimum voltage Maximum	$\begin{aligned} & >100 \mathrm{~ms} \\ & <400 \mathrm{~ms} \end{aligned}$
Contacts	
Contact material	AgNi
Contacts resistance ${ }^{(2)}$	$\leq 30 \mathrm{~m} \Omega$
Distance between contacts	1,8 mm
Permanent current	10 A
Instantaneous current	80 A during $200 \mathrm{~ms} / 200$ A during 10 ms
Max. making capacity	$40 \mathrm{~A} / 0,5 \mathrm{~s} / 110 \mathrm{Vdc}$
Breaking capacity	See breaking capacity curves (Contact Configuration Type A)
Max. breaking capacity	See value for 50.000 operations
$U_{\text {max }}$ opened contact	250 Vdc / 400 Vac
Performance data	
Mechanical endurance	10^{7} operations
Operating temperature	$-40^{\circ} \mathrm{C}+55^{\circ} \mathrm{C}$
Storage temperature	$-40^{\circ} \mathrm{C}+85^{\circ} \mathrm{C}$
Max. operating humidity	93\% / + 40으
Operating altitude ${ }^{(3)}$	<2000 m

HIGH / LOW BURDEN CONFIGURATION

High Burden configuration:
> Fast and extra-fast types
Low Burden configuration:
> Ultra-fast, extra-fast and fast types

The standard high speed tripping relays are manufactured with a low burden configuration, considering that the initiating contact is placed close to the tripping relay.

However, and in order to avoid unwanted trip relay operation due to pickup or transients, particularly if the relay operating coil is connected to extensive wiring, ARTECHE tripping relays could be manufactured with a high burden configuration, complying with ESI 48-4 international standard, as EB2 class relays. These EB2 class relays are suitable for use in high security circuit breaker tripping circuits, increasing their immunity to capacitance discharge currents.

For relays with rated voltage up to and including the 125 V , the relays will withstand, without operating, a discharge into their operate circuits of a $10 \mu \mathrm{~F}$ capacitor charged to 120% of the nominal voltage.

For relays with rated voltage of 220 V , the relays will withstand, without operating a discharge into their operate circuits of a $10 \mu \mathrm{~F}$ capacitor charged to 100% of the nominal voltage.

Specifications:
ESI 48-4 EB1: 1983 Low Burden
ESI 48-4 EB2: 1983 High Burden

HIGH BURDEN RELAYS CONSUMPTIONS

See table below:

Instantaneous	Standard Voltage Consumption
Latching: electric and hand\&electric reset	$<4 \mathrm{~W}$

BREAKING CAPACITY

With devices operating worldwide, also heavy industries like oil \& gas sector trust in our relays.

BREAKING CAPACITY

MAX. BREAKING CAPACITY ULTRA-FAST TYPE (Tripping contact):

The breaking capacity is a critical parameter on the design and the applications of the relays. Its mechanical life could be considerably reduced, depending on the value of the load (especially with heavy duty loads), the number of operations and the environmental conditions in which the relay is operating.

In any configuration, ARTECHE's auxiliary relays have a high breaking capacity values. These limits are showed in the table below, in terms of power and current values. In all the cases, these relays guarantee a right performance during 50,000 operations.

Likewise, the values showed in the following charts have been obtained in standard conditions in the laboratory, and they could be different in real conditions. In any case, the possibility of connecting serial contacts or a bigger distance between contacts makes these values to be considerably increased.

ELECTRICAL ENDURANCE OTHER MODELS

24 Vdc voltage Different loads configurations.

ELECTRICAL ENDURANCE ULTRA-FAST TYPE (Tripping contact):

Resistive load:

) $\mathrm{L} / \mathrm{R}=0 \mathrm{~ms}$.

\rightarrow Type B (Distance between contacts $=1,2 \mathrm{~mm}$)

		0 ms		20 ms		40 ms	
Vdc	Contact configuration	P(W)	I(A)	P(W)	I(A)	P(W)	I(A)
24	Type A	500	20,83	370	15,42	250	10,42
	Type B	450	18,75	300	12,50	210	8,75

110 Vdc voltage

Different loads configurations.

Resistive load:
$\mathrm{L} / \mathrm{R}=\mathrm{O} \mathrm{ms}$.

- Type A (Distance between contacts $=1,8 \mathrm{~mm}$)
\rightarrow Type B (Distance between contacts $=1,2 \mathrm{~mm}$)

$\rightarrow \quad 2$ contacts type A
- 2 contacts type B

0 ms		20 ms		40 ms	
P(W)	I(A)	$P(W)$	I(A)	P(W)	I(A)
170	1,55	140	1,27	90	0,82
125	1,14	100	0,91	65	0,59
1.360	12,36	1.106	10,05	730	6,63
874	7,95	742	6,74	482	4,38

125 Vdc voltage

Different loads configurations.

Resistive load:

> $\mathrm{L} / \mathrm{R}=0 \mathrm{~ms}$.

[^3]| | | 0 ms | | 20 ms | | 40 ms | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vdc | Contacts configuration | P(W) | I(A) | P(W) | I(A) | P(W) | I(A) |
| 125 | Type A | 158 | 1,26 | 120 | 0,96 | 75 | 0,60 |
| | Type B | 125 | 1 | 96 | 0,77 | 65 | 0,52 |
| | 2 contacts type A | 987,5 | 7,90 | 733,809 | 5,87 | 472,972 | 3,78 |
| | 2 contacts type B | 528,547 | 4,23 | 395,983 | 3,17 | 263,827 | 2,11 |

220 Vdc voltage

Different loads configurations.

Resistive load:

) $\mathrm{L} / \mathrm{R}=0 \mathrm{~ms}$.

Highly inductive load:
> $\mathrm{L} / \mathrm{R}=40 \mathrm{~ms}$.

$$
\rightarrow \text { Type A (Distance between contacts }=1,8 \mathrm{~mm}) \quad * 2 \text { contacts type A }
$$

\rightarrow Type B (Distance between contacts $=1,2 \mathrm{~mm}$) -2 contacts type B

HOW TO SELECT THE CURVE OF MY RELAY

These charts show the breaking capacity values, either for resistive and highly inductive loads, in three voltage values of reference (ask for other voltage values). The charts show four different curves:
> Type A: Breaking capacity of the relays with distance between contacts $=1.8 \mathrm{~mm}$.
> Type B: Breaking capacity of the relays with distance between contacts $=1.2 \mathrm{~mm}$.
> 2 contacts type A: Breaking capacity for relays with serial contacts, and distance between contacts $=1.8 \mathrm{~mm}$.
> 2 contacts type B : Breaking capacity for relays with serial contacts, and distance between contacts $=1.2 \mathrm{~mm}$.

The distance between contacts is shown in the tables of technical data.

HOW THE BREAKING CAPACITY
 CAN BE INCREASED

ARTECHE's auxiliary relays are power relays, designed specially to have a high breaking capacity. Thus, there are applications where the loads are so high that it is necessary to even increase the breaking capacity, keeping the reliability of the contacts of the auxiliary relays.

Recommendations to increase breaking capacity:
> Connect contacts in series. The breaking capacity is increased considerably, guaranteeing the right performance during a high number of operations. See curves for two contacts.
> Use ARTECHE range of contactors. See ARTECHE contactors catalogue for more detailed information.

PICK-UP VOLTAGE/RELEASE VOLTAGE-TEMPERATURE CHARTS

arteche

Variability of operative voltage range against temperature for the instantaneous auxiliary relays.

TRIPPING RELAYS

Operative range against ambient temperature.

TRIP AND LOCKOUT RELAYS AND TRIP AND
 LOCKOUT RELAYS WITH RESET PUSH BUTTON

Operative range against ambient temperature.

MODEL SELECTION

*Mandatory option
** For more information refer to railway application brochure

Trip circuit supervision	Type	LED Indicator configuration	Aux. Supply
Model Selection $>$			
	1	\leqslant	\pm
Relay type			
One phase	VDF-10		
Three phase	VDJ-30		
One phase relay LED Indicators configurator			
Correct operation of the VDF-10 OP is shown via an illuminated green LED (in the bottom left)		OP.	
Correct operation of the VDF-10 OP is shown via an illuminated red LED (in the bottom left)		OP. 1	
Correct operation of the VDF-10 OP is shown via an illuminated green LED (in the bottom left) in case of loss of continuity a red LED is illuminated in the upper left		OP. 2	
Aux. Supply- Vdc or Vac			
Indicate voltage level and if it is VDC or VAC (ex: 24 VDC)			

DIMENSIONS OF THE RELAYS

) Dimensions: $\mathrm{A} \times \mathrm{B} \times \mathrm{C}$

\oplus

Size and weight vary depending on the model. Please refer to datasheet for detailed info.

RETAINING CLIPS

RETAINING CLIPS	OP SOCKET	RELATED PLUGGED RELAY
EO	Universal (D and F sized sockets require 2 units ; J sized sockets require 4 units)	RD; RF; RJ; Universal (Bag of 20 units) TDF; TDJ; VDF; VDJ Universal (Bag of 100 units)
E41	DN-DE IP, DN-DE 2C IP	RD OP
E50	DN-TR OP, DN-TR 2C OP	RD OP
E40	FN-DE IP, FN-DE 2C IP	RF OP
E43	FN-DE IP, FN-DE 2C IP	TDF OP; VDF OP; RUT
E42	FN-TR OP, FN-TR 2C OP	RF OP
E44	FN-TR OP, FN-TR 2C OP	TDF OP; VDF OP; RUT
E31	FN-DE IP, FN-DE 2C IP	BF
E21	FN-TR OP, FN-TR 2C OP	BF
E45	JN-DE IP, JN-DE 2C IP	RJ OP
E47	JN-DE IP, JN-DE 2C IP	TDJ OP; VDJ OP
E46	JN-TR OP, JN-TR 2C OP	RJ OP
E48	JN-TR OP, JN-TR 2C OP	TDJ OP; VDJ OP
E29	JN-DE IP, JN-DE 2C IP	BJ; UJ
E27	JN-TR OP, JN-TR 2C OP	BJ; UJ
OTHER ACCESSORIES		
Security pins	R RD; RF; RJ; TDF; TDJ; VDF; VDJ	elays (bag of 100 units)

SOCKETS, DIMENSIONS AND CUT-OUT

Sockets		Accessories		Weight (g)
Relay	Type	Screw	Double faston	
D	IP10 Front connection	DN-DE IP10	DN-DE2C IP10	60
	IP20 Front connection	DN-DE IP20	DN-DE2C IP2O	60
	IP10 Rear connection	DN-TR OP	DN-TR2C OP	50
F	IP10 Front connection	FN-DE IP10	FN-DE2C IP10	110
	IP20 Front connection	FN-DE IP2O	FN-DE2C IP2O	110
	IP10 Rear connection	FN-TR OP	FN-TR2C OP	90
	IP10 Flush mounting (short)	$\begin{aligned} & \text { F-EMP } \\ & \text { SHORT OP } \end{aligned}$		300
	IP10 Flush mounting	F-EMP OP		300
J	IP10 Front connection	JN-DE IP10	JN-DE2C IP10	225
	IP20 Front connection	JN-DE IP20	JN-DE2C IP2O	225
	IP10 Rear connection	JN-TR OP	JN-TR2C OP	180
	IP10 Flush mounting (short)	$\begin{gathered} \text { J-EMP } \\ \text { SHORT OP } \end{gathered}$		400
	IP10 Flush mounting	J-EMP OP		400
1	IP10 Front connection	I-DE		1000
	IP10 Rear connection	I-TR	I-TR2C	500
	IP10 Flush mounting	I-EMP		500

Function signs on the extraction ring

Security pins

) Front connection socket

> Rear connection socket

> Flush mounting socket
arteche

[^4]${ }^{(2)}$ Minimum distance between sockets will depend on type of relay and sockets. Please request sockets user manual for more detailed information.

Updates: ARTECHE_CT_Tripping-relays_EN
Version: 2.16

[^0]: ${ }^{(1)}$ Other voltage upon request
 ${ }^{(2)}$ Ask for higher altitudes

[^1]: ${ }^{(1)}$ Other voltage upon request
 ${ }^{(2)}$ Ask for higher altitudes

[^2]: ${ }^{(1)}$ Other voltage upon reques
 (2) Ask for higher altitudes

[^3]: $=$ Type A (Distance between contacts $=1,8 \mathrm{~mm}$) * \quad contacts type A
 \rightarrow Type B (Distance between contacts $=1,2 \mathrm{~mm}$) $\rightarrow 2$ contacts type B

[^4]: (1) DIN rail according to EN50O22 DIN46277/3

